Procedural generation and realtime rendering of planetary bodies

Martin Kahoun

MFF UK

18.04.2011

Table of contents

- 2 Data representation
 - Level of detail
 - ROAM
 - Spherical ROAM
- 3 Terrain generation
 - Noise and fractals
 - Making noise
 - Implementation

Future work

Motivation

- Spare time of indie/hobby game developers spent on creating graphics content
- Eventually provide placeholder objects for demonstration purposes
- Not that much discussed topic
- Number of games already uses or could use procedurals:
 - Spore
 - Elite
 - .kkrieger
 - ...

Goal of the project

- Provide procedural planets for space based games
- Remove visual artifacts on poles
- Ensure reuse of generated content

Level of detail ROAM Spherical ROAM

LOD algorithms overview

- Various binary or quad tree approaches
- Realtime Optimally Adapting Meshes (Duchaineau, '97)
- Geometry clipmaps (Lossaso, Hoppe, '04)
- Spherical clipmaps (Clasen, Hege, '06)

Level of detail ROAM Spherical ROAM

The ROAM algorithm

- Binary tree of right triangles:
 - Leaves are rendered
 - 2 meta objects (square, diamond)
 - Recursive splitting
- Removes T-junctions
- Ensures mesh watertightness
- Uses visible error metrics to split/merge triangles

Level of detail ROAM Spherical ROAM

Mapping ROAM to sphere

- Idea by O'Neil: take 12 ROAM triangles and form a cube, move every new vertex to the sphere surface
- Takes care of possible memory woes at outer edges
- Wouldn't be icosahedron better?
 - Not worth the effort

Noise and fractals Making noise Implementation

Fractal based methods overview

• Requirements:

- No pre-generated data
- Dynamic yielding results on demand
- Easily adopted for spherical landscape
- Studied approaches:
 - Fault lines
 - Plasma fractal
 - Noise & fractal Brownian motion

Noise and fractals Making noise Implementation

The fractal Brownian motion

Height as sum of noise samples

$$h = \sum_{i=n}^{k} w_i \cdot f(\mathbf{v} \cdot n_i)$$

- *h* final height of the vertex **v**
- k number of noise samples (also called octaves)
- *w_i i*-th octave weight
- *n_i* lacunarity (or exponent) of *i*-th octave
- f the noise function (3d Perlin noise in our case)
 - Values of *w_i* and *n_i* either precalculated or sequentially changed between iterations

Noise and fractals Making noise Implementation

From geometry to shading

- Generate height lookup texture, normal map and "weather" map
- Create geometry (ROAMing)
- Render with GLSL shaders:
 - Underwater vertices pushed to the sea level
 - e Height-based texturing
 - Solour blending according to "weather" map
 - Apply per pixel lighting (using normal map)

Noise and fractals Making noise Implementation

Produced image

Martin Kahoun Procedural planets

Future work

- Better landscape generation algorithms:
 - Further study available approaches
 - Find a way to express weather zoning
 - Introduce rocks, etc.
- Improve world scaling (Google Earth effect)
- Remove lookup texture generation

• ...

Questions?

Martin Kahoun Procedural planets

<ロ> <同> <同> < 回> < 回>

æ

Thank you for your attention

æ

▲ 同 ▶ → 三 ▶